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Schrodinger lumps 
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Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India 

Received 5 November 1980, in final form 14 April 1981 

Abstract. We give a systematic method to construct exact non-spreading wavepacked 
solutions (lumps) of the Schrodinger equation for a charged particle in an electromagnetic 
field and of the nonlinear Schrodinger equation. The method yields new kinds of accelerat- 
ing lumps with both rotational and translational motion, in contrast to the more familiar 
soliton solutions which have constant velocity. In particular, we find new normalisable 
coherent states for the harmonic oscillator and new normalisable lumps for a charged 
particle in a constant magnetic field plus an electric field with axial symmetry. The method 
can also be applied to relativisitc wave equations and classical field theories to find their 
lump solutions. 

1. Introduction 

A fundamental difficulty in obtaining lump or particle-like solutions of the Schrodinger 
equation was first pointed out by Lorentz (1926) (for a textbook discussion see eg 
Messiah (1961)): ‘a wave packet can never stay together and remain confined to a small 
volume in the long run’. This difficulty, related to the linear and dispersive nature of the 
equation, was one of the reasons which led de Broglie (1960, ch 18) to introduce a 
nonlinear wave equation. A celebrated exception noted by Schrodinger (Schiff 1955, 
Schrodinger 1926) is the following exact non-spreading solution of the Schrodinger 
equation for a particle of mass m in a one-dimensional simple harmonic potential 
zmw x 1 2 2  

where a is real and 

Clearly the wavepacket for \ $ I 2  oscillates without distortion. Recently such solutions 
have been discovered for the free particle Schrodinger equation by Ignatovich (1978) 
and Berry and Balazs (1979). Especially remarkable is (Berry and Balazs 1979) an 
‘accelerating wavepacket’ solution for a free particle, 

where Ai denotes the Airy function and B is a constant. Berry and Balazs (1979) have 
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also obtained similar solutions in a time-dependent potential xF(t) .  Among these 
lumps only the Schrodinger solution (1) is normalisable. 

We report the results of a systematic search for lump solutions of the Schrodinger 
equation for a charged particle experiencing an arbitrary time-dependent electromag- 
netic field in addition to a charge-independent scalar potential. The class of electro- 
magnetic fields and scalar potentials for which lump solutions can exist is derived. In 
addition to recovering the few lump solutions already known, we find a variety of new 
solutions. Especially promising for future applications are the new coherent states of 
the harmonic oscillator, and normalisable lumps with the novel feature of rotational 
motion for a charged particle in a constant magnetic field plus an electric field with axial 
symmetry around the magnetic field direction. 

It is well known (Scott et a1 1973) that the nonlinear Schrodinger equation has 
‘envelope soliton’ solutions (lumps in the present language). The present work clarifies 
under what conditions the linear Schrodinger equation can have such solutions, and 
why so few of them have been noticed before: it also suggests the possibility of obtaining 
new kinds of lump solutions for the nonlinear equations of physics, especially for the 
nonlinear Schrodinger equation. 

In comparing the existence of lumps for the linear and nonlinear Schrodinger 
equations the following general remarks are relevant. (i) Irrespective of normalisability 
or probability density interpretation of l$(.x, t)I2, it is of special interest to ask for a 
shape-preserving or lump property for l $ lz  because of its gauge invariance. (ii) The 
differential equations obeyed by 1 + 1 2  are nonlinear even when $ obeys the linear 
Schrodinger equation. 

2. Definition 

A solution $(x, t )  will be called a lump if l $ l z  propagates in time without distortion 
except for a possible translation and rotation. For a lump we may write 

(4) CL = R (6) exp[iS(t, t ) lhI ,  

where R and S are real and 

Here the ai(t) are arbitrary real functions and U ( t )  is a real orthogonal rotation matrix, 

U T U = U U T = l .  ( 6 )  

If R is a constant independent of e, or if the a ( t )  are constants and U(t )  equals the 
identity matrix, we obtain trivial, i.e. stationary, lumps. We shall seek only non-trivial 
lumps. 

This definition differs from the usual definition of solitary waves (Scott et a1 1973) in 
allowing a( t )  to be general (rather than linear) functions and in the presence of the 
rotation matrix U(t ) .  The definition makes no reference to the superposition principle 
or to square integrability and is appropriate also for equations other than the 
Schrodinger equation, e.g. the nonlinear Schrodinger equation. In relativistic cases 
such as the Klein-Gordon equation, it may be appropriate to replace equation (4) by the 
statement that the charge density depends on only. 
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3. Method 

The Schrodinger equation for a charged particle in an electromagnetic field plus a 
charge independent potential Vo is 

where # and A denote respectively the scalar and vector electromagnetic potentials, e 
and m the charge and mass of the particle. Substituting (4) and using only the reality of 
R and S,  the Schrodinger equation is seen to be equivalent to the hydrodynamical-type 
equations (Madelung 1926, de Broglie 1927, 1960) 

(8) 
2 ap/at +div(pu) = 0, p = R ,  

- -=ed+ aS Vo+$mv2--  h2 LV2R,  
at 2m R 

where 
U = j / p  = (l/m)[VS - ( e / c ) A ] ,  

(9) 

j =  ( l / m )  Re[$*(-ihV-eA/c)$]. 

The gradient and curl of equations (9) and (10) respectively yield 

e (:+ U .V) mu = e E  -V Vo +-U x B 
c 

and 
curl U = - ( e /mc)B ,  

where E and B are the electric and magnetic fields. Equations (8), (12) and (13) 
constitute a gauge-independent formulation of the Schrodinger equation. Equation 
(12) resembles the classical Lorentz-force equation, except for the last term which may 
be called the quantum force. Except for this term equations (8), (12) and (13) describe 
motion in an external electromagnetic field of a classical fluid of non-interacting 
particles of charge e, mass m, local density p and local velocity U. These equations for p 
are nonlinear, though $ obeys a linear equation. 

3.1. Lump velocity versus hydrodynamical velocity 

In seeking lump solutions the hydrodynamical picture tempts one to postulate that the 
lump-velocity ulump equals the hydrodynamic velocity U. In fact such an equality is a 
corner stone of de Broglie's (1960) interpretation of wave mechanics. The equality 
holds also for all lump solutions hitherto discovered (Schiff 1955, Schrodinger 1926, 
Ignatovich 1978, Berry and Balazs 1979). Nevertheless we show that the Schrodinger 
equation forces a relation between the two velocities less restrictive than their equality, 
and we give explicit construction also of lumps of velocity different from 0. 

The definitions (4)-(6) imply that the lump velocity is 

where E (t) is the antisymmetric matrix, 

&(t )=  UT(t)Li(t), 
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and the dots over a ( t )  and U ( t )  denote time derivatives. The continuity equation (8) 
expressed in terms of 6 and t becomes, on using (14) and (15), 

( J / a t i ) t  [P(6)Uij(t)(uj - ( ~ i u m p ) j ) l  = 0. (16) 

The square bracket above must therefore be the curl with respect to 6 of some vector 
e(&, t ) .  Hence 

- (Ulump)l  = ( l / p ( & ) )  u f ( t ) & i j k ( J / a g j ) t ( 7 k ( 6 ,  l ) *  

 lump = b ( t ) / p ( t ) ,  (18) 

(17) 

In the special case of one space dimension equation (16) implies 

where b ( t )  is an arbitrary function of time. We see that the continuity equation places a 
non-trivial restriction on U - ulump, but allows it to be non-zero. 

The classes of Vo, E and B for which lumps exist are now obtained by substituting 
(17) (or (18)) into equations (12) and (13) and requiring a solution R = R(&)  to exist. 
The gauge-dependent phase S is detained by integrating equation (10). We consider 
first the case of one space dimension. 

4. Lumps in one space dimension 

We have 

B =0,  U ( t )  = 1, & ( t )  = 0 ,  6 = x -a ( t> ,  (19) 

Uiump = a ( t ) ,  v = d ( t ) + b ( t ) / p ( [ ) .  (20) 

Substituting (20) in (12), we obtain the class of 'allowed' electric fields E and potentials 
Vo for which lump solutions exist: 

eE(x ,  t )  - - Vo(x, t )  
a 

ax 

The class of allowed fields is parametrised by three arbitrary functions a ( t ) ,  b ( t )  and 
R (6) .  Any choice of these functions yields a lump solution of the Schrodinger equation 
corresponding to a field given by (21). The phase of the wavefunction is easily 
calculated from equation (10). A large variety of lumps is thus obtained. 

For a fixed 6 (say 6 = O) ,  equation (21) gives the equation of motion of the centre of 
the lump; this equation differs from the classical equation due to the quantum force 
term and the terms depending on b ( t ) .  For a fixed t, equation (21) determines I?([), i.e. 
the shape of the lump. 

In a physical problem where E(x,  t )  and Vo(x, t )  are specified a priori, the chance of 
equation (21) being satisfied for some a ( t ) ,  b ( t ) ,  R(5) is remote. This partly explains 
why so few lumps have been previously encountered. However, the lack of a systematic 
approach has also prevented the discovery of lumps, as will be evident from the new 
lump solutions obtained here. 
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4.1. Previously known lumps 

Let us first remark that we recover very simply all the previously known lumps. They 
correspond to 

b ( t )  = 0 ,  e E - V V o ( x ,  t )  = Cl(t)+xCZ,  (22) 
with C1 = Cz = 0 for the free particle, C,(t) # 0, CZ = 0 for an electric field depending on 
time only, and CI = 0, CZ # 0 for a simple harmonic potential. For consistency of (21) 
and (22) we need 

m u ( t ) =  Cl( t )+Cza(t)+C3 (23) 
and 

where C3 is a real constant. Note that, for a free particle, C3 just equals the quantum 
force and allows the accelerating Airy lump quoted before. The shape of R (5) is given 
by Airy's differential equation both for the free particle and for the time-dependent 
electric field case, since C, ( t )  enters only the equation of motion (23). For a simple 
harmonic oscillator of frequency w ,  Cz = -muz ,  and the modulus of the original 
Schrodinger lump (1) is readily seen to satisfy (24). 

4.2. New lumps and new coherent states of the harmonic oscillator 

Now comes a surprise. There are other lumps for the simple harmonic oscillator with 
b ( t )  = 0. Integrating equation (24) once, we obtain Weber's differential equation whose 
solutions are well known to be the parabolic cylinder functions (Whittaker and Watson 
1963). Thus 

~ ( 5 )  = c~D"(z) + CSI'(-n)[D,(-z) - C O S ( ~ ~ - ) D , ( Z ) ] / ( ~ . ~ ~ ) " ~ ,  

z = ( 2 m w / h ) 1 / 2  (5 + ~ ~ / m w ' ) ,  

(25) 

where 

(26) 

C4, Cs and n are arbitrary real constants and the D,(z) denote parabolic cylinder 
functions. Further, 

(27) a ( t )  = c 3 / m w Z  + c6 cos(wt + 41, 
c6 and 4 being real constants. The solution (25) is in general not square integrable. 
However, for Cs = 0 and n integral, we obtain 

which are (apart from the phase factor exp(iS/h)) just the oscillator eigenfunctions with 
x replaced by x - c6 cos(wt + 4 ) .  The lumps (25) and the square integrable lumps (28) 
for n = 1 , 2 , 3 ,  . . . are believed to be new. The latter represent square integrable, shape 
preserving wavepackets with classical motion, and hence may be called coherent states, 
in analogy to the n = 0 Schrodinger lump, equation (1). The new coherent states have 
an uncertainty product A x h p  = ( n  +$?I, showing that minimum uncertainty is not 
required for coherence. 
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Further, for the new case Cl(t)  # 0 and CZ # 0 with both a time-dependent electric 
field and a simple harmonic oscillator potential, lumps are present. Their shape is given 
by equations (25) ,  (26 )  and (28) ,  and their motion by the well known forced oscillator 
equation (23) .  

4.3. The general case b ( t )  # 0 

To obtain a glimpse of how restrictive the class of allowed fields is, we seek allowed 
fields of the simple form 

eE(x ,  t ) -aV, /ax(x ,  t )  = C l ( t ) + F ( x ) ,  (29 )  
most frequently encountered in physics. Substituting this in (21 )  and taking (dldt),, we 
obtain 

where 
U =U([)= 1 / R 2 ( [ ) .  

Consider first the possibility 

b( t )  = 0 ,  b ( t )  = b. (32 )  

Then equation (30 )  requires a function of 6 alone to equal a function of t alone, and 
hence both must be constants, 

(33 )  

Integration yields the same equation for a ( t )  as (23 ) ,  but for the shape of the lump the 
nonlinear equation 

- ( h 2 / 2 m 2 ) R " ( 5 ) +  b 2 / 2 R 3 ( 5 )  = (1/2m)(Cz[2-2C35-2Cs)R(&). (34 )  

Equation (21 )  now yields the remarkable result that the corresponding allowed field 
must have 

F ( x )  = c2x, C l ( t )  arbitrary. (35 )  
Explicit solution of the nonlinear equation (34 )  is made possible because of the 
following elementary theorem (Pinney 1950, Lewis 1967, equation (6 ) ) .  

Let y l ( x ) ,  y ~ ( x )  be two solutions of the equation y " ( x )  + g ( x ) y ( x )  = 0 ,  with Wron- 
skian y 1 y ;  - y ~ y ;  = 1. Then the equation 

(36 )  Y"(x) + g ( x )  Y ( x )  = W Z / (  Y(X))3 

has the general solution 

Y(x)  = *[ W2(y7i/I)+I(Jy1 f y2)2]1'2 (37 )  
where I, J are arbitrary constants. 

Applying the theorem to equation (34 )  with CZ = -mu2, W 2  = m b 2 / ( 2 h w )  and z 
given by equation (26) ,  we find that the general lump with b ( t )  = b is given by equation 
(37 )  with Y(x)  + R (t), with y1 ,  yz denoting respectively the parabolic cylinder 
functions multiplying C4 and Cs in equation (25) ,  and with n , I , J  arbitrary real 
constants. None of these solutions with b # 0 is square integrable. 
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Lumps with d ( t ) #  0 

Detailed calculations in this case are involved. We prove (appendix 1 )  that for 
Cl(t) = 0, the only such lump occurs for the Morse potential. Explicitly, 

eE - V Vo = C9m exp(C9x + Glo + Cll)[C12 + exp(C9x + CIO + CII)], (38 )  

(39 )  

(40 )  

a 0) = C d  + c13,  

v ( t )  = c ~ ~ + ~ ( ~ ) / R ~ ( E ) ,  

b( t )  = exp(C9a(t) + Cld, 

R ( E )  = expl: -3C9E + Cldl, 
where C9,.  . . , C13 are arbitrary real constants. 

We have demonstrated the existence of lumps of non-hydrodynamical velocity. For 
three dimensions, in order to concentrate on several new physical features, we discuss 
the simpler case of lumps of hydrodynamical velocity. 

5. Three-dimensional lumps of hydrodynamical velocity 

The choice U = ulump satisfies (17) for C = 0. Equations (13 )  and (14 )  now yield 

Bi = -(mc/e)&ijk&jk(t), ( 41 )  

i.e. for a lump solution the magnetic field can depend on time, but not on space 
coordinates. From Maxwell’s equations the corresponding electric field must be of the 
form 

eE(x, t )  - V Vo (x, t ) = m (x - a ( t )) x h ( t ) - V V (x, t ) (42) 

where V(x,  t )  is an arbitrary real function and 

w ( t ) = ( e / 2 m c ) B ( t ) ,  0 = JWI .  

Substituting 

U = vlump = U ( t )  + (X - a ( t ) )  x w ( t ) ,  

(43 )  

(44 )  

where f ( t )  is an arbitrary function. Equations (42 )  and (45) are the three-dimensional 
analogue of equation (21 ) .  The allowed electric and magnetic fields are parametrised 
by U(t ) ,  a ( t )  and I?(&); any choice of them, with V given by (45) ,  leads to a lump. 

The equation of motion of the centre of the lump, 6 = 0 (x = U ( t ) ) ,  has a relatively 
transparent form, 

whereas the shape R (5) is to be calculated from (45) with t fixed. 
Very special space-time dependence characterises the allowed electric and 

magnetic fields. We give some examples of physically interesting lumps for time- 
independent fields. 
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5.1. Rotating lump: charged particle in a constant magnetic field plus electric field with 
axial symmetry around the magnetic field direction 

For a space-time independent magnetic field in the z direction, we have w = w i  and 

i cos(wt) -sin(wt) 0 

0 1 
u(t) = 1 s i n r t )  cos(wt) 0 . (47) 

Clearly equation (45) is consistent for the time-independent potential 

(48) 
2 2  v = g(x + y , 2 )  = im,”x2 + y Z ) ,  a = 0 ,  

where g is an arbitrary function invariant under rotations around the z axis. R ( e )  
satisfies the linear differential equation 

square integrable lumps are obtained for 

E = - (mA ’1 2h2) (1 / n ‘), n = l , 2 , 3  , . . . ,  ( 5  1) 

with R being given by 

where Rnlm,(r) are Coulomb eigenfunctions for the potential (-A/r)> and Clm, arbitrary 
complex constants. The all important difference from the usual energy eigenfunctions 
is that 

(53) r + 6 = r(sin 0 cos(wt + d), sin 6 sin(wt + d), cos 0) 

at a point (r, 6,d) so that equation (52) describes a non-trivial rotating lump whenever 
m’ # 0 terms are present in the summation (52). This rotation is in accord with classical 
motion; however the lump is stationary in the z direction in spite of a non-zero electric 
field in that direction. The electric field is crucial in obtaining the square integrable 
lumps (52). Other rotating lumps corresponding to other choices of g(x2+y2,  2 )  may 
be similarly obtained. 

5.2. Translating 1 ump; non harmonic potentia Is 

Equation (45) can be made consistent for zero magnetic field, with 

v = c * x + % m ( v : x :  + v Z x 3 + h ( x 3 ) ,  (54) 

where C, v:, Y,’ are real constants and h ( x 3 )  an arbitrary real function. For example, we 
may choose 

( 5 5 )  
2 i i l ( t )  = pl  - vial(r), a 2  = p2 - u2a2, a3 = 0, 

f ( t , =  c - a(t)+tm(v:a:( t )+v,’a,’( t ) ) ,  (56 )  
where PI and p2 are arbitrary constants. Then the shape of the corresponding lump is 
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obtained from a solution of the linear equation 

- ( h 2 / 2 m ) V : R ( S ) + R ( S ) [ C  S + h ( v ? t :  +v% +2p151+2/12~2)+h(53)1=0. (57 )  

Similarly, 

V = C  . x + $ m v : x :  + h ( x ~ , x 3 ) ,  ( 58 )  

u l ( t )  = ~1 - v:al(t) ,  

f ( t )  = c * a(t)++mv:a?(t), 

with h(x2, x 3 )  an arbitrary real function, yields a lump with 

a2 = a3 = 0,  (59 )  

(60) 

(61) 

Equations (54 )  and (58 )  are examples of non-harmonic potentials for which purely 
translational lumps exist. However, in each case, the arbitrary function h depends only 
on coordinates along which the lump does not move (see equations ( 5 5 )  and (59 ) ) .  
These lumps are normalisable whenever the solution R(6)  to equation (57 )  or (61 )  is 
square integrable. The three-dimensional forced oscillator, 

- ( h 2 / 2 m ) V : R ( S ) + [ C  * S+$mv:& +mp15l+h(&,  53)1R@)=O. 

3 

V = C . x + i m  1 v:x:+h, 
i = l  

with h a real constant, has lump solutions with 
2 

U i ( t )  = pi - vi U i ( t ) ,  i = 1 , 2 , 3 ,  

h2 m 3  
- - V z R ( f ) + (  C * S+y (v?i$ + 2 p & ) +  h)R(&) = 0, 2m i = l  

where the p i  are arbitrary real constants, The solution R(6)  factorises as 
Rl(&)R2(52)R3(&) where each factor obeys a differential equation of the form (24 )  
whose solutions have already been discussed in detail. 

5.3. Lumps with rotational and translational motion 

Consider again the case of a space-time independent magnetic field in the z direction 
with U(t) given by (47 ) .  The lump condition (45)  can be satisfied with the choice 

V=C. .+ tmv: (x :+x22)+~mv:x32+h ,  (66) 

and with the equations of motion 

m(ul-2ci2w + v:al)=D1 cos(ot)+D2sin(ot)-c1,  (67)  

(68 )  

(69) 

m ( ~ 2  + 2Ulw + v:a2) = - ~ 1  sin(wt) + ~ 2  cos(wt) - ~ 2 ,  

m ( U 3  + v ia3)  = ~3 - ~ 3 ,  

f ( t ) =  c * a ( t ) + i m v : ( a :  +ag)+lmv:a:(t), 

where C, Y:, v:, h, D1, D2 and D3 are arbitrary real constants. If we further choose 

(70 )  
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the shape of the lump obeys the equation 

- (h2/2m)V:(5)+[5 .D+:m(w2+v:) (& +[i)+:mv:& +h]R(g )=O.  (71) 

Explicit solutions of (71) of the form R I ( & ) R ~ ( [ ~ ) R ~ ( [ ~ )  with each factor obeying an 
equation like (24) are easily obtained. Explicit solutions of (67)-(69) for v1 # 0 and 
v3 # 0 are 

CI + iC2 + e-iui( D1 + iD2 + (F~ + s2) exp[it(w2 + w 2 1 1/2  I 
m (w2  + v: al(t)+ia2(t)  = -~ 

mv: 

+(GI +iG2) exp[-it(w2+ V I )  3 (72) 

a3( t )  = [(D3 - C,)/mv:]+F3 cos(v3t) + G3 sin(v3t), 

) 
and 

(73) 

where the Fi and Gi ( i = l , 2 , 3 )  are arbitrary real constants, and a1 and u2 are 
respectively the real and imaginary parts of the right-hand side of equation (72). Note 
that for v: > 0 and v: + w 2  > 0, the a i ( t )  are oscillatory functions, bounded for It1 + m. 
This is not so for v: = v: = 0 (the explicit expressions for that case are omitted here). In 
summary, we have exhibited a lump whose rotational motion is given by equation (47), 
translational motion by  equations (72)-(73) and shape by equation (71). 

6. Nonlinear Schrodinger equation 

As an example of application of the method to nonlinear equations, consider the 
equation 

ih ?@/at = [ e 4  + Vo+ (1/2m)(- ihV- eA/c)']1C, - kO/$l21C,, (74) 
which differs from the Schrodinger equation (7)  by the addition of the nonlinear term. 
This equation for the case q5 = Vo = A = 0 has been widely discussed (see e.g. Scott et a1 
1973, Ginibre and Velo 1980) because of its numerous physical applications in optics, 
plasma physics, superconductivity, particle physics etc. 

Substituting for 1C, the equation (4), equation (74) yields, as before, equations 
analogous to (8)-(13) with the sole difference that in equations ( 9 )  and (12) 

( 1 / R ) V 2 R  + ( 1 / R ) V 2 R  +(2mko/h2)R2.  (75) 

In particular, the continuity equation and hence the relation between lump velocity and 
hydrodynamical velocity are unaltered. Further, since the change in (75) involves a 
function of 5 alone, for every potential which admits lump solutions in the linear case, 
there are lump solutions also in the nonlinear case, with the same form for the equations 
of motion for a( t ) ,  and with the equation for the shape of the lump changed as in (75). 

It may be useful to give explicit formulae for the case of one space dimension and 
q5 = Vo = A = 0. Seeking lumps of hydrodynamical velocity, i.e. qump = U, we obtain 

where C3 is a real constant. Hence 

R " ( [ ) / R  + (2mko/h2)R2 = (2m/h2)C3[+ C4, (77) 
with C4 real, For C3 = 0 and C4 > 0, an explicit solution is easily obtained using a result 
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due to Reid (1971), that the equation 

Y”(5)-w2Y(5)= c/yZp-l, 

has a solution (for p # 0, 1) 

Thus, equation (77) for C3 = 0 and C4 > 0 has a solution 

2937 

(78) 

where a is an arbitrary real constant. Equation (80) may be rewritten 

R (5) = h(C4/m I k01)1/2 se~h[C4*’~(5 - t o ) ] ,  if ko>O, (81) 

(82) 

where to is an arbitrary real constant. The envelope soliton solution corresponding to 
(81) is well known (Scott et a1 1973). Equation (82) also yields a lump; however it blows 
up at 5 = to. 

The novel feature brought out by our method is the existence of lumps with 
non-zero acceleration corresponding to C3 # 0 in equation (77). Solutions of this 
equation for ko < 0 may be easily obtained by noticing that it reduces to the equation 
defining the second PainlevC transcendent (see e.g. Davis 1962) 

(83) 

and 
R (5) = h(C4/m 1 k ~ / ) ’ / ~  c0sech[C4’/~(5 - t o ) ] ,  if k o <  0, 

d2y/dx2 = 3y3 + xy + p, 

if we identify p = 0, and 

x = [ ( 2 m / h 2 ) ~ 3 5 + ~ 4 ] ( h 2 / 2 m ~ 3 ) 2 ’ 3 ,  

y = R(5)[2m/3(-ko)]1’2(2mkC3)-1/3. 
The shape of the lump R (5) may now be easily computed using the extensive analytical 
results (appendix 4 of Davis (1962)) and numerical tables (table 2 of Davis (1962)) for 
the second PainlevC transcendent (Davis 1962, 1956). 

We may also note that lumps of non-hydrodynamical velocity, e.g. 

U = Ulump + b/R ’(5), Ulump = b( t ) ,  (86) 

exist, with the equation of motion 

mii(t) = C3, (87) 

and the shape of the lump given by 

7. Concluding remarks 

We have given in this paper a method to construct solutions which propagate without 
change of shape. In contrast to the usual solitonic solutions known in literature, which 
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generally move with constant velocity, we also find solutions which describe lumps 
which have accelerated motion. Apart from linear acceleration the lump could be 
rotating as well. We believe that rotating lumps are a qualitatively new feature. 

We have illustrated the method by finding envelope solitons for the linear, as well as 
nonlinear, Schrodinger equation. The interesting general result is that potentials which 
admit lump solutions in the linear case also have lumps in the nonlinear case, with the 
same motion a ( t )  but with the shape of the lump depending on the nonlinearity. 

This close relation does not appear mysterious if we recognise that (motivated by 
gauge invariance) we required the shape preserving property only for I $ 1 2 .  Even when $ 
solves the linear Schrodinger equation, ] $ I 2  obeys the nonlinear hydrodynamical-type 
equations. The corresponding equations in the nonlinear Schrodinger equation case 
differ only in the differential equation for R(5) due to the replacement (75). It is 
important to remark that this does not imply that in any lump solution R(5) in the 
nonlinear case we can set ko = 0 to obtain the corresponding solution in the linear case. 
A counterexample is provided by the solutions (81) and (82) of equation (77) for C3 = 0: 
the limit ko = 0 does not exist. The equations for R (5 )  have to be solved separately in 
the linear and nonlinear cases. 

What are the possible physical applications of the new lumps? For the linear 
Schrodinger equation the new square integrable lumps for the harmonic oscillator and 
for a charged particle in a constant magnetic field plus an axially symmetric electric field 
seem especially interesting. In particular, we have found (Roy and Singh 1981) that 
Sudarshan’s diagonal coherent state representation for an arbitrary density operator for 
the harmonic oscillator in terms of the Schrodinger states, as well as other properties of 
coherent states useful in quantum optics (Glauber 1963a, b, c (1964), Sudarshan 1963, 
Klauder and Sudarshan 1968), can be generalised in terms of the new coherent states. 
Physical applications of the new solutions in the nonlinear case remain to be worked 
out. 

Is there a systematic method to identify a proper analogue of multisoliton solutions? 
In the linear case if and $2 are lump solutions, then $1 + $2 is also a solution; but in 
general +$212 cannot be approximated by l$112+1ib2/2 even after a long time. For 
example, the coherent states of the oscillator always remain close to the centre of force. 
Hence $l + $2 cannot in general be interpreted as a two-lump solution. In the case of 
localised lumps + $2 may be interpreted as 
a two-lump solution. We have not yet found for the linear Schrodinger equation square 
integrable lumps rL1, $2 with this property (if we relaxed square integrability two 
solutions of the Berry-Balazs form equation (3) would do). We do not know whether 
the well known multisoliton solutions of nonlinear equations (Scott et a1 1973) may be 
generalised to give multi-lump solutions. 

The next major task is to apply our method to find new lump solutions of relativistic 
wave equations and classical field theories. 

and i,b2 whose separation + CO for t + 00, 

Note added in proof. We have become aware that the harmonic oscillator lumps (28) were known earlier 
(Senitzky 1954). 

Appendix 1. Solutions of equations (30) for Cl( t )  = 0 ,  and b ( t )  f O  

Since the left-hand side of equation (30) is of the for” (f1(5) + f 2 ( t ) ) ,  using 
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we obtain 

Dividing by 2u’bb (U’ f 0 for non-trivial lump), and again using (Al) ,  

There are only three ways in which (A3) could be satisfied: 

(ii) 

d (d/dt)(bb/ci) 
-( dt  2bb 

d (d/dt)(bb/d) 

) = o ,  (5) ‘ # 0, 

( $) ’ z 0, -( d t  2bb 

(iii) (u ” /u ’ ) ’  = 0. 

We shall rule out the possibilities (i) and (ii) and show that (iii) can be realised only in the 
case of the Morse potential. 

Case ( i ) .  It follows that b = a l b 2 + a 3 ,  and 2bb=a(a2b2+a4) ,  where the ai are 
constants. Using b2(t) # constant, equation (30) now yields 

;(U’)’’ + d 1u’ - a2[alu + 3(u’)’] = a6, 

( A ’ / ~ ~ ~ ) ( R ” / R ) ”  = u3u‘ -  u4[uiu +t(u2)’]  +a7, 

a6b2(t) - = ;/U, (A61 

(A4) 

(A51 

where 

U/d = ( a 2 b 2 ( t ) + a 4 ) - 2 { 2 a ~ ( a ~ b 2 + a 3 ) ( a ~ b 2 + a ~ ) 2  

+(ala4 - ~ 2 ~ 3 ) [ ( ~ 2 b ~ +  a4)(2alb2- 2a3) + 8a4(alb2+ ~3)]}. (A7) 

Subcase a2 = 0. Equations (A6) and (A7) yield 
2 

a6 = 12a 1, = - 8 ~ 1 ~ 3 .  

Equation (A4) can be integrated to yield 

[U -3a1([ + a8/12a?)]3[u +&I([ + a8/12a:)]4= a9. (A81 

Calculating the asymptotic behaviour of U([) for [ + 03 from (A8), and using U(() = 
I?-’([), we can compute the asymptotic behaviour of (R”/R)”. This conflicts with the 
asymptotic behaviour calculated from (A5), showing the inconsistency of (A4)-(A7). 

Subcase a2 # 0. Equations (A6) and (A7) imply ala4 - a2a3 = 0, a6 = 2at and 
a7 = - 2 ~ 1 ~ 3 .  Equation (A4) can be integrated to yield 

[q(v2-2/a2)11/2 = a l l / J&+(2a l / a2 )  ln[v + ( v ’ - ~ / u ~ ) ~ / ~ I  (-49) 

where 

= exp(a25 + a d ,  U = ( u  +2Ul/U2)/J-;. 

Again, the asymptotic behaviour of U (5) following from above implies a behaviour of 
( R ” / R ) ”  that conflicts with (A5). 
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This completes the proof of the inconsistency of case (i). 

Case (i i) .  It follows from (A3) that 

[ ( U  2)’’/ U ‘1’ 
( U ” / U I ) ’  

= a1 

and 

b=albb /a+a2b2+a3 .  

Equation (A1 1) can be integrated to give 
2 

( U  ) ’ -alu’=a4u+as.  

U - (a5 /a4  + la l )  ln(u + a5 /a4 )  = ;a4([ + a6). 

For a4 # 0, this integrates to 

It is easy to show that for 5 + 03, equation (A.14) conflicts with equation (30). In the 
subcase a4 = 0, (A13) is similarly seen to conflict with equation (30). 

This completes the proof of the inconsistency of case (ii). 

Case (iii).  For ( u “ / u ‘ ) ’ =  0 ,  we must have R ( [ )  as given by equation (40). Hence 
[ (u2 )” /u ’ ] ’  # 0. Hence (A3) yields 

) = O .  
d ( d / d t ) ( b b / a )  
-( d t  2bb 

It is then easy to prove that equations (38)-(40) are necessary and sufficient for 
consistency of equation (30). 
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